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Al~mct--We have derived a consistent and general set of equations to describe the motion of two phases 
(or components) in flow through a contraction. One phase is continuous, the other dispersed and the range 
of density ratios p is wide. Given the density and flowrate of each component of the flow, the pressure, 
velocities and void fractions can be computed at any location along the pipe. The single-phase limit as 
well as the homogeneous-flow limit are both contained within our set of equations. The full mathematical 
model, based on the so-called interstitial velocity, requires only one fluid-dependent empirical input--the 
terminal rise (or fall) velocity U t of a single bubble (or droplet). In the text, the word "bubbles" is to be 
thought of as the dispersed or discontinuous component of the flow and may refer to air bubbles in water 
flow, oil drops in oil or water flow or water drops in air or oil flow. Extensive comparisons between results 
from the model and experimental data obtained in the Schlumberger Cambridge Research multiphase flow 
loop are presented and show very good agreement in predicting pre~tre from input flowrates. Our results 
demonstrate that, although the model is one-dimensional and neglects local bubble-bubble interactions, 
it is nevertheless robust in dealing with vertical flow and a wide range of density ratios with only one 
parameter (Ut) necessary for calibration. For two density ratios p of I000 and 1.26, the agreement between 
the mathematical predictions and the experiments was good in vertical flow. The implication of this 
conclusion is that the model should perform well at any intermediate values of the density ratio. 
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1. I N T R O D U C T I O N  

Flow systems involving a mixture of gas and liquid or liquid and liquid occur commonly in the 
petroleum industry. Of particular interest is the prediction of pressure drop for mixtures such as 
gas bubbles in oil or water, or oil droplets in water flowing through varying geometries. One of 
the fundamental requirements for equipment design procedures is to formulate correctly a 
mathematical model for a two-phase flow system with a wide range of density ratios. 

The mathematical model described here differs from most of the previous works in that it is a 
unified model being able to treat air-water as well as oil-water mixtures. It is also based on the 
so-called interstitial velocity, i.e. the velocity of the unperturbed liquid between the bubbles (or far 
from the bubble, in the case of one bubble), rather than on the average velocities as is most often 
done in the segregated or two-fluid models. Drew & Lahey (1979) and Biesheuvel & van 
Wijngaarden (1984) gave good descriptions of the two-fluid models as essentially a suitable volume 
average of the conservation equations for each of the two phases, with interaction forces sometimes 
grafted to it. Most general-purpose models used for engineering applications today are two-fluid 
models. In recent developments of these models, Lewis & Davidson (1985) and, more recently, Kuo 
& Wallis (1988) considered the one-dimensional equations of motion for a bubble flowing through 
a nozzle. But even these models did not allow for the effects on the flowrate of the liquid caused 
by the presence of flowing bubbles or droplets and, in particular, by the relative velocity (or slip) 
between the bubbles and the liquid. These effects were considered in a new analysis by Kowe et al. 
(1988), who compared their model with the measurements of Lewis & Davidson 0985). The 
aPl~oac,h and derivation of the equations of motion reported here follows and extends that given 
by Kowe et  al. (1988) and is similar in principle to the mathematical formulation given by Cook 
& Harlow (1984). 
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Figure 1. Contraction geometry and pressure tapping locations. 

This paper first describes the equations of motion for a bubbly or droplet flow through a pipe 
with varying internal geometry, more precisely through a vertical contraction (figure 1). When the 
two phases move at the same velocity the mathematical model reduces to the limit of the flow of 
an equivalent fluid with the same mixture density. The second part of the paper consists of new 
experimental results using a multiphase flow loop at Schlumberger Cambridge Research. Velocity 
and pressure data have been acquired for different flowrates of air bubbles in water or oil droplets 
in water, both in vertical and inclined flows. Comparisons with the model presented here are 
restricted to wall pressure measurements for the vertical cases. 

2. DEFINITIONS AND ASSUMPTIONS 

We consider flow in a vertical pipe of varying cross-sectional area A(x), where the x-axis is 
streamwise vertically up the pipe. The flow is considered statistically stationary, i.e. there is no time 
variation in the temporal averages of fluctuating quantities over a time period T. The integral 

-~ R(x,  y, z, t) dt [11 

is therefore constant at any spatial point. R(x,  y, x, t) can represent, for example, the pressure, the 
velocities or the void fractions. 

We mention at this point the more important of the numerous assumptions made in the analysis 
of a bubbly flow, as in Kowe et al. (1988). It is assumed that the bubbles are rigid spheres all of 
the same density Pb and volume Vb and with a small diameter compared with the pipe diameter. 
Note that the word "bubbles" is to be thought of here as the dispersed or discontinuous component 
of the flow and may refer to air bubbles in water flow or oil drops in water flow. The bubbly flow 
considered is of a dispersed nature. No explicit account is taken of the effects of liquid- and 
bubble-density variations, unsteady drag, liquid turbulence generated by mean shear and bubble 
wakes and the bubble-waU and liquid-waU friction forces. The velocity profiles are flat, akin to 
a turbulent single-phase pipe flow and although the results are not presented here, local liquid 
velocity surveys indicate that even at low void fractions this is a good assumption. It is further 
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assumed that all bubbles at a given cross section move with the same velocity, i.e. the velocity has 
been averaged so that the description of the flow is one-dimensional. 

In this one-dimensional system, all flow variables are taken to be spatial averages over the pipe 
cross section. The void fraction, for example, normally defined as the ratio of the volume of the 
light phase over the total volume of both phases, is given by 

Eb(X)=-I fAEb(x ,y , z )dA.  [2] 

The subscript b or B refers to the discontinuous or dispersed phase (bubbles), while the subscript 
1 or L refers to the continuous phase (liquid) so that the liquid void fraction (or liquid holdup) 
is E~(x). It is also understood, but not explicitly stated for the discussion that follows, that in 
general, all flow parameters are dependent on x. 

Some of the nomenclature used in this paper will now be described. If there are n bubbles per 
unit volume, the void fraction, as introduced above, is simply 

Eb = n Vb [31 

and the liquid holdup is just ~1 = 1 - Eb. 
Bubbles are assumed to move with a velocity Ub. The bubble-phase superficial velocity UB is given 

by 

Qb [4] UB= A , 

where Qb is the volume flowrate of the discontinuous or dispersed phase. The average bubble 
velocity is then 

Qb UB 
(Ub)  = = - - .  [5] 

ebA E b 

Note here that (Ub) --Ub since all bubbles are assumed to  move with the same velocity at a given 
cross section of the flow. 

For the liquid, the superficial velocity UL is given by 

01 
U L ~ " ~ ,  [6] 

where Qj is the liquid volume flowrate. The liquid average velocity is then 

( u , ) -  UL 
= = Z [7] 

The concept of the interstitial velocity u~, as introduced above and in Kowe et al. (1988), serves 
to represent the liquid velocity in the space between the bubbles; u~ can be thought of as the 
background velocity field determining the motion of any bubble in a low void fraction mixture. 
uL and thus (u~) can be expressed in terms of the interstitial velocity by introducing the concept 
of virtual mass in the displacement of the bubbles through the liquid. When a body moves 
uniformly through an infinite volume of incompressible inviscid fluid at rest, it induces a drift in 
the fluid such that the drift-volume of fluid is equal to Cm V, where V is the volume of the body 
and Cm is known as the added-mass coefficient (Darwin 1953). For a rigid sphere Cm has the value 
0.5 (Lamb 1945). For  the present formulation, bubbles are modelled as rigid spheres, and so the 
virtual mass concept must also be introduced as in Kowe et al. (1988). Then the liquid flowrate 
across a surface area A is 

QI = /'/L A = [(1 - -  Eb)Ul + Eb Cm (Ub - -  Ul )]A, [8] 

wherein use has been made of the relation ~j = 1 - Eb, and ub -- u~ is known as the relative velocity. 
Combining [7] and [8], the liquid average velocity can now be rewritten as 

£b 
(/'/1) = Ul "It- - -  Cm (/db --/ ' /I).  [9] 

El 
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Figure 2. Illustration showing the bubble velocity ub, the interstitial velocity u~ and the liquid average 
velocity (ut). 

Figure 2, similar to figure 1 in Kowe et al. (1988), illustrates how the distinction between interstitial 
and average velocity is associated with the liquid transported by the bubbles. 

The interstitial velocity can also be rewritten in terms of  the volume flowrates and the bubble 
velocity, making use of  [4]-[9]: 

(QI -- Cm ~b)Ub 
ul = Aub -- (1 + Cm)Qb" [10] 

The above expression will be used later in the solution procedure. 

3. E Q U A T I O N S  OF M O T I O N  

3. I. Equations of  mass conservation 

With the definition of  void fraction given in the previous section, a simple conservation 
relationship relates the two components of  the flow: 

eb+ ~n = 1. [11] 

Each component of  the flow also obeys its own mass-conservation law stating that the flowrate, 
once specified at the inlet, is constant throughout the pipe for steady flow and constant densities, 
i.e. 

d 
d'-x (AEb (Ub)) = 0 [ 12] 

and 
d 

dx (AEI (u t ) )  = 0. [13] 

3.2. Momentum equation for bubbles in liquid flow 

The momentum equation for a single bubble in an unsteady liquid flow can be written in terms 
of a generalized force equation as follows (Thomas et al. 1983): 

Db Ub 
Pb Vb ~ = Fb, [141 

where Fb is the resultant force acting on a rigid spherical bubble of  volume lib moving at a velocity 
Ub. The material derivative is defined as 

D b _  O 0 [15] 
Dt  - dt + Ub ~X" 
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If there are n bubbles per unit volume and use is made of  [3], the momentum equation for the 
dispersed phase is then 

DbUb 
ebPb ~ = nFb. [16] 

Thomas et al. (1983) first considered the inviscid flow around a spherical bubble. This is an 
appropriate model when the bubble Reynolds number (defined in terms of the bubble diameter and 
relative velocity) is large [> 1000, equivalent to a diameter of 5 mm and a rise velocity in water 
of 15-25 cm/s (Clift et al. 1978)] and the water is pure. If the bubbles are also sufficiently small 
that there is local homogeneity in the flow velocity gradients, the bubble velocity will depend only 
on the interstitial liquid velocity and its first derivatives. With this assumption of local homogendty, 
Thomas et al. (1983) have then assumed that drag can be added to the force derived for inviscid 
flow and, for a sufficiently low void fraction, that bubble-bubble interactions can also be neglected. 
Fb can thus be decomposed into four uncoupled contributions, 

F b f F p + F g + F ~ + F d ,  [17] 

which are now described. 
If the x-axis is streamwise and upwards, the force Fp due to the pressure gradient in the liquid 

far from the bubble is given by 

Fp ---- -- V b ~x [18] 

) =piVb\ Dt + g  ' [19] 

where p] is the undisturbed liquid pressure, g is the gravitational acceleration and 

Di _ a 0 
Dt ffi O-t + u, ~xx" [20] 

The gravitational force Fg exerted on the bubble in the absence of the liquid is simply 

F, = - -  P b  Vbg, [21] 

IFsl being the weight of the bubble. It may be noted that in the absence of  flow, Fp and F s are 
frequently combined into what is commonly called the buoyancy force. 

The virtual-mass force Fv can be thought of as a drag force in its inviscid limit, i.e. the inertia 
force due to the local acceleration of the added mass of liquid travelling with the bubble, and is 
written as 

/ DbI . .aul~ evffi -~--~-  + "~-~x), [22] 

where I is the "impulse" of the motion of the bubble [in the sense of Kelvin (Lamb 1945)], i.e. the 
momentum of the added mass of liquid which travels with the bubble due to the pressure field 
associated with the motion of the bubble (Thomas et al. 1983; Auton et al. 1988). l i s  proportional 
to the relative velocity, the constant of proportionality as mentioned earlier being the added-mass 
coefficient Cm: 

I = Pl Vb Cm (Ub - -  g/I )" [23] 

Substituting [23] in [22] yields 

v, I 0 a Ou, ] F, = -p, ~Cm _~i (U~ -- U,) + U~ ~ (U~ -- U,) + (U~ -- U,)~X j 

(D Ub V, ,3 
ffi - 9, Vb Cm \ DI ~ ,/ .  [24] 
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Recently, Drew & Lahey (1987) have also concluded that this is the correct form for the 
virtual-mass force, rather than the form suggested in their earlier publications. 

The actual drag force Fd on the bubble is due to the viscous stresses changing the pressure 
distribution around the bubble. Neglecting the non-uniformity and unsteadiness of the surrounding 
flow, Fd can be expressed in the usual dimensional scaling form as 

Fd = -½pt (ub  - u,) I Ub --  u, ] Cdna 2, [25] 

where a is the bubble radius and Cd is the drag coefficient. Note that, in our treatment of real 
bubbles at high Reynolds number, form drag predominates and Cd, normally a function of 
Reynolds number, is approximately constant (Thomas et al. 1983). Therefore, as an alternative, 
and sometimes more convenient formulation, particularly when the bubble radius and the drag 
coefficient are unknown, the drag force can be rewritten in terms of Ut, the terminal rise (or fall) 
velocity of a bubble in an infinite stationary liquid, corresponding to a balance of the gravitational 
and drag forces (Wallis 1969): 

Ut 2 = 8[Aplag 
3p~ Co ' [26] 

where Ap = P b -  P~. This formula leads to 

( U b  - -  Ul)lUb - -  Ul I 
Fd = - l a p  I Vbg U~ [27] 

Although the formulation in terms of Ut is used generally from now on, it should be borne in mind 
that it rests on the assumption that Cd is independent of the bubble Reynolds number. 

Combining the above results leads to the expression for the total force acting on a bubble: 

FOul (ObUb D,u,  
Fb=p, VbL D t + g - C m \  Dt Dt ) - ~  g - g  p,U 2 

Di ul _ t" DbUb Ap [ Ap [ (Ub --  Ul) t Ub --  Ul I.] [28] 
=plVb ( l ' } - C r a ) - - D - - I  v m  Dt p ~ g - g  p,U~ J" 

In the limit Pb '~ P~ (i.e. for a gas-liquid system) and for steady flow, the one-dimensional 
momentum equation for a bubble reduces to Fb-----0 or 

.., , du~ (ub - ua) I Ub - nil [29] 
CmUb ~-(l + t~m)Ul-d-~x + g - g  U2t ' 

which is precisely [28] in Kowe et al. (1988). 
The expression for the total force Fb can also be rewritten explicitly retaining the interstitial 

pressure gradient [18], which leads to 

. rop,  (Obuu (ub-u,)lu -u,i] t30] 
Fb= VBL--~X - p , C ~ \  Dt Dt }--Pbg - g l A p l  U~ " 

Again assuming steady flow and using [3], the momentum equation for the dispersed phase becomes 

..~ dul dpl (ub -- Ul)[Ub -- Ul l [31] 
(Pb'~plCm)Ub~x - -  R I U ' m U I ~ x x  - -  dx Pbg --gIApl U~ 

As for the liquid average pressure ( p ) ,  it may be defined, following Kowe et al. (1988) by 
integrating over the inviscid flow near a bubble. Knowing that the liquid velocity is greater near 
the bubbles than the interstitial velocity, the difference between the average and the interstitial 
pressure is seen as being proportional to the square of the relative velocity and to the relative 
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vohnne of liquid occupied by the bubbles. ( p )  can be written in terms of the interstitial pressure, 
Pl, i.e. the liquid pressure between the bubbles on a surface across the flow, as 

Pl CmEb(Ub - -  Ul) 2 
(P > = Pl -- 2El [32] 

Equation [32] together with [9] clearly illustrated the difference in going from an average-variable 
formulation to [31] by introducing extra terms of order ~b. Note that [32] is imbedded in [8.7] and 
[8.8] of Biesheuvel & van Wijngaarden (1984). 

It becomes apparent that [31] is identical to an average-variable equation in the cases when 
Eb-+0 or when the relative velocity ub - u, is zero. The first case is the single-phase limit, while the 
second case of no slip between the two components of the flow (homogeneous-flow limit) reduces 
both equations to an equation similar to Bernoulli's equation where the pressure drop is balanced 
by the gravitational and the acceleration terms. 

3.3. Momentum equation for the liquid component 

The momentum-balance equation for the liquid component can be derived mathematically by 
integrating the unsteady Navier-Stokes equations over a fixed control volume of fluid containing 
and possibly intersecting bubbles. A thorough mathematical derivation and validation was 
presented in Kowe et al. (1988). Rather than duplicating this previous work here, let us describe 
the final result as an equation similar to that for the dispersed phase, where the rate of change of 
liquid momentum is equal to the sum of various forces acting on the control volume. The 
momentum-balance equation can then be physically explained in terms of these different force 
contributions. 

On one side of the steady-state momentum-balance equation is the variation of the liquid 
momentum flux given by 

I- 2 2% . ] LPlmU, + ~-~EI ApICm(Ub- Ul) 2 
dx J 

where the first term is the momentum flux in the absence of bubbles, i.e. in the unperturbed fluid 
far away from the bubbles (the change of liquid momentum flux due the presence of bubbles within 
the control surface will be incorporated later). The second term is the additional momentum flux 
in the liquid at the surface of the control volume and caused by the flow near the spherical bubbles 
as in Kowe et al. (1988). On the other side of the equation are the pressure forces arising from 
the boundaries of the control volume, the weight of the liquid and the force due to the presence 
of bubbles in the control volume. 

The streamwise pressure force acting across the control volume is simply -d (A  (p)) /dx.  The 
pressure force per unit length on the walls can in turn be written as Pw dA/dx, where Pw is the wall 
pressure, i.e. the pressure that would be measured by a transducer on the wall. With a 
one-dimensional flow approximation and since wall friction forces are neglected, it is assumed that 
the wall pressure is the same as the average liquid pressure ( p )  across the flow. 

The weight per unit length of the liquid is given simply by --AElplg. 
Following the derivation in section 3.2 of the resultant force Fb acting on a bubble, it should 

be noted that some components of Fb are forces due to the liquid motion, i.e. they are interfacial 
forces acting on the bubble. In fact, F b - F g  is precisely the interracial force acting on a bubble. 
Consequently, the reactive component of this force should appear in the liquid momentum equation 
to take into account the presence of bubbles. Finally, as mentioned earlier, the presence of the 
bubbles within the control surface also implies a change of momentum of the liquid accelerating 
with the bubbles (Kowe et al. 1988). With the number of bubbles being expressed by ~b and for 
a steady state, the reactive force per unit pipe length from the bubbles is: 

- - A £ b  "{- P b g  - -  PlUb d x ] "  

The last two terms in the above expression are, respectively, the weight of the bubbles and the 
change of momentum of the liquid accelerating with the bubbles. 
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Combining all the above force contributions for a steady flow and using [30] yields the liquid 
momentum equation: 

dx plAu2 +'~qlAplCm(Ub ul)2 _ ( p ) d A  d dul - -  -~x +-~x (A (p )) - AEbplUb dx 

VdP, f dUb d u ~ ' ~  -u,)lUb--U,t-] [331 
= --Ae'p'g+AebLdx +plCm~Ub-~x-Uldx) +glApl(ub g2t 1 " 

Replacing ( p )  in terms of Pl by the use of [32], the 1.h.s. of [33] becomes 

dul dA dul 
A +2Ap, u,-~x+P,U~x--Aebp, ub-~x+H, [341 

where 

H =Ptl@ {4(Ub_ U,)2ebdA d [ Ul)2~l'~. [35]  
E, d-----~ - A dxx (ub - q / . }  

Replacing the l.h.s, of [33] by [34], dividing by A and rearranging the terms yields: 

dul 2 1 dA ( dUb dul'~ 
p, ( 2u, - ~b u~ ) ~ + p~ U l -J T~x ~b O, Cm .ub T ~  x - u, ~ ) + 

d?, 
= --q-~x Elplg + ebglAp 

for the liquid momentum equation with 

f d[ H -TO-- 4(ub - tE l )2/;~- A. ~ dx  (ub - u] )2 

(ub  - u~) l  ub - u~ I 
u~ [36] 

[37] 

Here also, as for the bubble momentum equation in the previous section, it is easy to see that [36] 
reduces to Bernoulli's equation when the relative velocity vanishes (homogeneous-flow limit) as well 
as for the single-phase flow limit (Eb = 0) (see the appendix). 

To arrive at a two-component pressure equation, [31] and [36] are combined by eliminating the 
drag term between the two equations. This leads to: 

dpt 1 dA dUb 
d-x "Jl- (EIJ°I 3t- Ebl0b)g = - -PI(2Ul  --  EbUb) ~---~ --  PltEI2 A d--x --ebPbUb-~X H. [381 

Similarly, a velocity equation can be derived by eliminating the pressure gradient between [31] 

and [36]: 

dul 2 1 dA duu ( duu dul~ H 
p, (2u, - Eb Ub) ~XX + p' U, ~ ~ -- E1Pb Ub ~ -- P, Cm Ub ~ -- U, dxx ) + 

[ IApI(Ub--UI~2U-b--U'I1 [391 
= g A p  q-~ Ap Ut A" 

It is worth noting that [38] reduces to the single-phase Bernoulli equation for Eb = 0. Equation [38] 
also collapses to a "two-phase Bernoulli equation" when ub = u~, with p~ being replaced by the 

mixture density Pm ~- EbPb + £1PI" 
By a suitable choice of non-dimensional variables, the above set of equations can be 

transformed into a non-dimensional set such that all the quantities are of order unity. For that 
purpose, the contraction length L is chosen as the normalizing length and (Ql + Qb)/L2 as the 
normalizing velocity, whereas Q = Qb/(Qt + Qb) defines a non-dimensional flowrate. 
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4. SOLUTION PROCEDURE 

The non-dimensionalized equations are solved in terms ofpl and Ub. What is given is the geometry 
of the pipe, i.e. A (x), the density of each component of the flow, the terminal rise (or fall) velocity 
of the bubbles in stationary liquid, Ut, and the constants Cm and g. The equations were solved for 
pipe length of 7L, 3L ahead of and 3L past the contraction. The experiments were run with air 
bubbles or oil droplets in a water continuous phase. The respective densities are 1, 790 and 
1000 kg/m 3. The terminal rise velocity of an air bubble is taken to be 0.25 m/s, whereas the terminal 
rise velocity of an oil droplet is taken to be 0.15 m/s. These values of terminal velocities are the 
ones given by the Harmathy relationship (Harmathy 1960): 

Ut = l'53 ( '~g(~ Pb)) Pl [40] 

where or is the interfacial tension. This relationship has been shown to be widely applicable in terms 
of  density differences of flows at low void fraction (Nicolas & Witterholt 1972). 

Two boundary conditions, are needed at the upstream inlet to solve the two first-order ordinary 
differential equations and these are taken as the flowrate of the two components of the flow. 
Knowing the two flowrates, it is sufficient to set th and ub to arbitrary values at the inlet: for a long 
enough inlet, these two variables will relax to the proper steady value associated with the given 
flowrates. In the case of the pressure, it can be chosen without loss of generality to be p~ = 0 since 
what is of interest is the pressure variation rather than the absolute pressure through the 
contraction. 

The inlet bubble velooty (as well as ul and Eb at the inlet) could be readily obtained by solving 
iteratively, for the case of a fully developed flow, the three non-linear equations [5], [8] and [39]. 
However, for the sake of  computational simplicity and efficiency, its value is obtained .by first 
solving the ordinary differential equations in a straight pipe (with no contraction) of 7L to allow 
the velocity to relax to its constant value appropriate to the given flowrate. For that purpose, the 
boundary condition at the inlet is set to be 

Ub = Co(UL + UB) --IApl U~. [41] 

Co is regarded in the literature (Govier & Aziz 1982) as a distribution coefficient related to the liquid 
velocity profile and the bubble concentration profile although, in general, there seems to be no 
physical reason why the same constant should be multiplying both the liquid and bubble velocities. 
Here Co is taken to be a relaxation parameter such that Ub is constant at the inlet of the pipe. The 
velocity thus obtained is then used to initialize the solution of the differential equations through 
the contraction. 

The profiles of pressure, the velocity of each component and the void fraction of each component 
can now he determined at all locations along the length of the pipe and through the contraction. 
For comparison with the experimental data, the pressure drops along the straight section of the 
pipe and across the contraction will also be obtained. 

It may be of value to remind the reader that the approximations inherent to the model are many. 
The fact that the equations of motion are derived correctly only for low bubbly-phase void fraction 
(volumetric fraction of bubbles) will be illustrated below in the comparisons with experimental data 
when the model is used to predict pressure drops at relatively high void fractions. The use of the 
terminal rise (or drop) velocity of a single bubble or droplet in a stationary liquid in the formulation 
of the drag .force on the bubbles or droplets is also an obvious source of discrepancies since it is 
well-known that as the void fraction increases, the rise (or drop) velocity may change due to mutual 
interaction. This is particularly evident in the case of gas bubbles which coalesce as the void fraction 
increases, giv/ng larger faster-mo.ving bubbles, whereas oil droplets tend to behave more like 
independent solid spheres for the whole range of void fraction considered. Another approximation 
of seemingly less importance is the fact that the model is one-dimensional and thus assumes that 
at a given cross section the bubbles or droplets all travel at the same speed, even through the 
contraction region. The model also considers the flow as being in a steady state which, in itself, 
constitutes an averaging of the motions. 
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Figure 3. Bubble average velocity (ub)  (upper curve) and liquid average velocity (u j )  (lower curve) vs 
the streamwise coordinate x. The left plot is for an oil-water system (density ratio p = 1.266, Q = 0.21) 

while the right plot is for an air-water  system (density ratio p = I000, Q = 0.24). 

5. T Y P I C A L  R E S U L T S  

The aim of this section is to exemplify the results which the one-dimensional model described 
here is capable of giving. Detailed comparisons with experimental data are documented in a section 
below. 

Figure 3 shows the average velocity profiles for the liquid (lower curve) and for the bubble 
~omponent (upper curve) of a vertical flow passing through the contraction geometry. The left plot 
is for an oil-water system while the right one is for an air-water system. Comparing the two plots, 
it is seen that the air bubbles are subject to a greater acceleration through the contraction section 
then the oil drops due to their lower density. 

Figure 4 shows in the left plot a typical average liquid pressure profile through the contraction. 
In the straight section, only the hydrostatic contribution is present followed by a pressure drop 
through the contraction before reverting to a straight hydrostatic profile in the narrower section 
above the contraction. An interesting phenomenon illustrated by our model in the right plot of 
figure 4 is the fact that the light-phase void fraction can either increase or decrease through the 
contraction. The two curves are for two different sets of flowrates, both for the light and the heavy 
components of the flow. 

6. E X P E R I M E N T A L  A P P A R A T U S  

The experiments described in this paper were performed in a multiphase flow loop (shown 
schematically in figure 5) in the Fluid Mechanics Department at Schlumberger Cambridge 
Research. The working section is made up of 3" (76.2 mm) nominal bore clear acrylic plastic pipe. 
Visually it was observed that in both oil-water and air-water conditions the flows were generally 
made up of bubbles in a diameter range from 3 to 8 mm, though at high void fractions (over about 
15%) cap-shaped air bubbles of larger diameter appeared in the air-water flow. The air bubbles 
tended to form a high concentration rapidly-moving stream at the centre of the pipe, whereas the 
oil droplets tended to be more evenly distributed. This range of droplet sizes gives a ratio of pipe 
size to bubble size of between 10 and 25. 

-1~  O~ 1.0 2.0 ~0 4.( 

X 

J 

-3.0 -2.0 -3.0 -2.0 -LO 0.0 1.0 2.0 3.0 4.0 
X 

Figure 4. Left plot: liquid average pressure (,Pt) vs the streamwise coordinate x for an oil-water system 
(density ratio p = 1.266, Q = 0.21). Right plot: bubble void fraction E b vs the streamwise coordinate x for 
an air-water  system (density ratio p = 1000). The left curve is for Q = 0.19 while the bo t tom curve is for 

Q = 0.30. 
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Figure 5. The Schlumberger Cambridge Research multiphase flow loop. 

6.1. Air-water flows 

For an air-water flow, the water phase is provided from a reservoir tank via a centrifugal pump 
and the flowrate is measured by one of two turbine meters according to the range required. Air 
is supplied from a centrifugal compressor via a regulator and control valve to an injection plate 
which resembles a perforated cartwheel. The air flowrate is measured by a single Kurz Series 505 
linear mass flowmeter with a 0-5 V output. This is an industrial grade device with a claimed 
accuracy of better than 2% of the indicated flowrate (1% at full scale). The output is true mass 
flowrate at standard conditions, thus obviating the need for local pressure and temperature 
measurements at the meter. 

Having passed through the test section the air-water mixture is returned to the reservoir tank. 
The geometry of the return line is such that the presence of air does not produce destabilizing back 
pressures on the system. 

6.2. Oil-water flows 

The flow loop has the capability of circulating two liquid phases, one phase through the pump 
and turbine meter arrangement described above, the other through an identical parallel arrange- 
ment of pump and turbine meters (with the same technical specifications) before being injected into 
the primary flow immediately upstream of the working section. To ensure a uniform injection the 
secondary phase is injected through eight ports equally spaced around the flow. 

Once mixed in the test section the two liquids have to be separated before they can be reused. 
This is achieved by means of the separator illustrated in figure 5. The mixture enters a chamber 
at the bottom of the separator and thence through an array of six Knitmesh cylinders. Knitmesh 
is a commercial product consisting of a matrix of two metals with different surface tension 
properties such that the continuous phase is able to pass straight through, but any small bubbles 
of the secondary phase are temporarily trapped in the matrix. As the small bubbles accumulate 
they also agglomerate, until they are of sufficient size that they are either buoyant enough or heavy 
enough (as the case may be) to be able to separate from the other phase under gravity. With the 
lighter phase now above the heavier phase, outlets at the top and bottom of the separator tank 
feed to the appropriate pump for recirculation. Valves are provided for selecting the mode of 
operation, selecting which turbine meters are to be used, and for choking the flow to facilitate low 
flowrates when necessary. 

The oil used in the experiments described in this paper was an odourless kerosene, with a density 
of 790 kg/m 3 at 15°C and an absolute viscosity of 1.6 cP at 25°C (manufacturer's figures). 
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Table 1. Pressure tapping locations 

Tapping No. Axial location (x/L) 

I - 12.55 
2 -6.86 Table 2. Axial location of the traverse positions 
3 -1.18 Traverse location Axial position (x/L) 4 1.04 
5 1.21 A -6.86 
6 1.41 B -3.13 
7 1.76 C 0.39 
8 2.74 D 0.98 

6.3. Instrumentation 

The experimental apparatus was designed with a view to maximum automation, and both control 
functions and data acquisition are supervised by computer. Both pumps are equipped with variable 
speed controllers which can be controlled by a 0-10 V signal from a remote device. Likewise the 
air control valve, which operates on a 3-15 psi pressure signal, is controlled in turn by a 4-20 mA 
signal from the remote device. Hence the flow conditions can be selected and set up by software 
control. 

Two differential pressure transducers were used to monitor the pressure along the pipe at a 
number of  locations, given in table 1 and indicated schematically in figure 1. The position of the 
tappings is referred to the start of  the contraction, and normalized on the length of the contraction, 
so that the change in flowing area occurs between x/L = 0 and x/L = 1.0. An arrangement of 
solenoid valves controlled by the computer allowed the pressure lines to be switched, and also 
provided the means by which the transducers could be zeroed and the pressure lines regularly 
flushed through to remove any air or oil present. Both transducers had an effective output of 
4-40 mA (4-20 mA nominal) monitored by two digital ammeters. 

Control and data acquisition were effected with a BBC microcomputer via an IEEE interface. 
A 32016 (1 Mbyte) co-processor was used to increase computing speed and memory capacity. Data 
was stored on floppy disc. 

Used in conjunction with the BBC was an autonomous data acquisition and analogue control 
system (ADU). This device scans up to 16 analogue channels and 4 digital channels simultaneously 
and either stores the data in its own memory, or communicates directly with the BBC via the IEEE 
link. Also provided are 4 analogue control outputs supplying 0-10 V, which were used to control 
the pump speeds and air control valve. 

Air flowrate, test section static pressure and test section temperature from a thermocouple were 
all monitored by the ADU. The output from the water and oil flowmeters were monitored by the 
BBC via a frequency counter and the differential pressure transducer outputs (4-40 mA) were read 
by two digital ammeters, all over the IEEE link. 

In addition to the pressure tappings, the working section was equiped with a single-axis traverse 
that could be mounted at various axial locations, as detailed in table 2. A cylindrical hot-film probe 
could then be traversed across a diameter of  the pipe by a stepper motor  controlled from the BBC 
to measure the local void fraction distribution. The method used to interpret the hot-film signal 
was the PDF and thresholding technique described by Brunn & Farrar (1988). 

7. C O M P A R I S O N S  OF THE E X P E R I M E N T  AND MO D EL 

The results obtained experimentally were in two parts, firstly the pressure drops across the 
contraction for an air-water mixture or an oil-water mixture, each for a range of  flowrates and 
secondly more detailed pressure measurements along the pipe. For the pressure drop "across the 
contraction" we refer to the pressure difference between tappings 3 and 7, a distance of three times 
the contraction length, and for the more detailed measurements the pressure points marked on 

figures 7-9 are from tappings 3-8. 
The first set of data have been plotted relative to the bubble void fraction just before the flow 

enters the contraction (actually at pressure tapping 3). Figure 6 shows the percentage difference 
for the model predictions relative to the experimental pressure drops across the contraction vs 
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bubble void fraction; the left graph is for the air-water cases and the right one for the oil-water 
cases. It is clear that the model is accurate to better than 10% up to 30% bubble void fraction. 
In the dilute region (<  10%) the agreement in both cases is excellent. Since the model assumes no 
bubble-bubble interactions other than those caused by the change in interstitial velocity, it is not 
surprising that above 20% bubble void fraction there is an increasing discrepancy between model 
and experiment. The variation seems to be quadratic, consistent with the limitations of the model. 
Note also that the accuracy within 5% for the singie-phase cases quantifies essentially the variability 
in the experimental data relative to BernouUi's equation for loss-free flows. It is also apparent that 
the experimentally derived single-phase>, discharge coefficient of 0.984 (i.e. an  underestimate of 
1.6%) is consistent with the zero void fraction limit of the two-phase results. 

Pressure profiles along the pipe as predicted from the model are shown in figures 7 and 8. On 
each graph the associated experimental points are also shown. In general it can be seen that the 
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Figure 7. Liquid p~ssure vs the streamwise coordinate x for 
air-water cases. + , Q  ~O.13; O, Q =0,22; A, Q =0.29; 
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Figure 8. Liquid pressure vs the streamwise coordinate x for 
oil-water cases. -6, Q --0.I1; I"1, Q =0.40; A, Q =0.42; 

©, Q = 0.57; x, Q -- 0.69. 
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Figure 9. Liquid pressure vs the streamwise coordinate x for oil-water cases. Dashed lines are for + 5% 
deviations in the inlet flowrates. Left:  Q = 0.11. Right:  Q = 0.41. 

agreement is good, both for air-water (figure 7) and oil-water (figure 8) cases. Some detail 
effects are present in the experiments which are not represented in the model. For example the 
"overshoot" in the pressure at x = 1.0 in each case is indicative of a small flow separation which 
occurs at the end of the conical contraction due to the sharp corner leading into the subsequent 
straight section of pipe. This would obviously not be seen in the one-dimensional model since the 
tappings are not actually modelled numerically but the pressure is obtained as a field throughout 
the pipe. 

To illustrate quantitatively how good the agreement is in the pressure profile comparisons, the 
pressure profiles corresponding to a change of +_ 5% in the given flowrates at the inlet are plotted 
alongside the one calculated from the given flowrates and the experimental data points. Figure 9, 
for example, emphasizes two extreme cases for an oil-water mixture: the left graph is for the case 
where Q =0.11, whereas the right graph is for Q =0.41. In the second case, corresponding to 

Integrated oil 
vo lume f ract ion 

.492 

• 497 

• 5 0 3  

. 5 0 2  

B 

Sca le  

I" A 0 

W 
void  f r l o m m  

0 . 3 t 4  

0 . 3 6 2  

0 . 2 8 6  

0 . 3 i 7  

D 

!-- 
B O.5 

A [ 0 

Figure 10. Localoil fraction distributions for oil-water flow 
with flowrate ratio Q =0.40. The symbols represent 
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Figure 1 1. Local void fraction distributions for air-water 
flow with flowrate ratio Q = 0.40. The symbols represent 
the measured data, while the line joins points representing 
the average of the two values at that radius on either side 
of the centreline. The plots are shown diagrammatically 
in their approximate axial locations relative to the contrac- 
tion, with the integrated value of the volume fraction 

( I /A) j'~_~/~ d,r dr. 
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a greater void fraction, the error is larger, consistent with the model limitation but even this 
magnitude of error is satisfactory for many design purposes. 

It is interesting to consider the implication of this good agreement between experiment and 
theory bearing in mind the significant assumptions involved in the derivation. One major 
assumption is that the bubbly flow is made up of a uniform dispersion of uniformly sized 
spherical bubbles. From visual observations the oil-water flows appear to conform to this 
approximation, but the air-water flows show a wide range of bubble sizes and distributions. 
Figures 10 and 11 gave the local void fraction distributions for an oil-water flow and an air-water 
flow, respectively. It can be seen that the assumption of uniform distribution is quite reasonable 
for oil-water, but in error for air-water. Thus, the analysis seems robust to significant variations 
from the assumptions governing the derivation of the model, for reasons that are not readily 
apparent. 

8. CONCLUSION 

From the approach given by Kowe et al. (1988), we have derived a consistent and general set 
of equations to describe the motion of two phases (or components) in flow through a contraction. 
One phase is continuous, the other dispersed and the range of density ratios is wide. Given the 
density and flowrate of each component of the flow, the pressure, velocities and void fractions can 
be computed at any location alone the pipe. The single-phase limit as well as the homogeneous-flow 
limit are both contained within out set of equations. The full mathematical model requires only 
one fluid-dependent empirical input--the terminal rise velocity of a single bubble, Ut. This is in 
contrast to simpler models where extensive empirical calibrations are required. The use of the 
interstitial velocity and virtual-mass concepts removes the empiricism between the relative velocity, 
the void fraction and the terminal rise velocity. 

Comparisons with experiments demonstrate that, although the model is one-dimensional and 
neglects local bubble-bubble interactions, it is nevertheless robust in dealing with vertical flow and 
a wide range of density ratios. Ut was obtained from standard correlations for the fluids used and 
was not artificially adjusted for these specific experiments. Both when p = 1000 or p = 1.26, the 
agreement between the mathematical predictions and the experiments was good in the vertical flow 
cases. The implication of this conclusion is that the model should perform well at any intermediate 
values of the density ratio. 
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A P P E N D I X  

The liquid momentum equation is given by [36]: 

ldA / dub_ du,  
p,(2u,--ebUb)~ x + p,u~-~ d---x --£bPlCm~ ub ~X ul dx / + H 

= -el-~x elplg +ebglAp] 

with 

(ub - u l )  I Ub - u, t 
' 

dx 
= 0  

d[AebUb + A (1 - eb)Ul] 
dx 

d(Au0 
dx 

d(Aun + AUL) 

.Cm{ ,l A d I H = --i-0- 4(ub - ul)2 (Ub -- Ul): eb 
el A dx dx el])" 

To show that it reduces to Bernoulli's equation when Ub = U~ (and trivially when E b = 0), the 
second term of the equation has to be rewritten using the continuity relation [13] and the fact that 
ul = UL/EI when there is no slip (ul = UL for eb = 0) (see [8]): 

2 1 dA UL dA 
pLu, A d-xx = p~u, E,--A d--~ 

Ul dUL 
- -  Pl e~ dx 

ul d(el ul) 
- -  Pl el dx 

= -P l \EI  dxx + ul d x ] "  

Following the definitions for the superficial velocities in section 2 and the equations of mass 
conservation in section 3.1, we have 
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and 

d(AUL) 
dx 

n = 0  

d(A¢lul) 

dx 

which therefore implies 

when u b = U I . Then, we have 

d ( A u ~ )  . ~ dEi 

dE~ 0 
dx 

1 dA dul p#2 _ m 
A dx = - p l u ~ - ~  

when Ub = U], which, in turn, reduces the two first terms of  [36] to Eipiu~dul/dx. Since the 
virtual-mass term, H and the drag term all vanish when there is no slip (as well as when Eb = 0), 
[36] becomes 

dul d/,l 
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